# Vibrational Spectrum of Cyclic C<sub>34</sub>H<sub>68</sub> and Chain Folding in Polyethylene Single Crystals

### S. Krimm\* and J. Jakeš

Harrison M. Randall Laboratory of Physics and Macromolecular Research Center, University of Michigan, Ann Arbor, Michigan 48104. Received April 13, 1971

ABSTRACT: A complete normal vibration analysis has been done for cyclic C<sub>34</sub>H<sub>68</sub>. These results support the assignment of a band at 1342 cm<sup>-1</sup> to the fold region of the molecule. Our analysis, however, does not support the conclusion previously suggested, viz., that the spectrum of this molecule shows that tight folding does not occur in polyethylene single crystals. A calculation of the longitudinal acoustic modes of some linear paraffins shows that the relationship obtained for finite chains probably cannot be carried over directly to planar segments which are connected by folds.

he nature of the fold structure in polymer single crystals has been the subject of extensive studies using a number of techniques.<sup>1</sup> Until recently none of these provided direct information about the details of the molecular organization involved in chain folding. On the basis of normal vibration calculations, however, it was possible to show that an infrared study of mixed crystals of polyethylene and perdeuteriopolyethylene could reveal the organization of chain stems in polyethylene single crystals.<sup>2</sup> Subsequent experimental studies of such systems indicated that in crystals grown from dilute solution the chain reentry could not be random, and that in fact (110) folding with predominantly adjacent reentry was favored.3 While these results could not reveal the nature of the fold itself, lattice frequency studies 4 suggested that the fold was closer to being "tight" than to being "loose."

It has been suggested<sup>5</sup> that the fold configuration of the cyclic paraffin (CH<sub>2</sub>)<sub>34</sub> could serve as a possible model for the fold regions of polyethylene single crystals. In particular, the crystal structure of this paraffin6 indicates that the configuration is representative of a tight fold. An infrared study of the spectrum of this cyclic paraffin, as well as of the spectra of some linear paraffins, was therefore used to determine the kind of folding present in polyethylene single crystals.7 It was concluded7 that such crystals "... do not have appreciable adjacent reentry (tight fold)," and that "... the surface structure of the monolayer single crystal is somewhat between the amorphous state and that of a tightly folded structure (adjacent reentry)."

Since the spectroscopic analysis depends upon the assignment of bands to folds, and because this molecule can provide a model for studying the longitudinal acoustic (LA) vibrations of extended planar zigzag segments in polyethylene single crystals,8,9 we have undertaken a complete normal vibration analysis of cyclic (CH<sub>2</sub>)<sub>34</sub>. The results confirm the fold band assignment previously used,7 but our analysis does not support the conclusions drawn with respect to fold structure in polyethylene single crystals. Our results also show that the relationship obtained for the LA vibrations of finite chains probably does not carry over to cases in which coupling between adjacent polymethylene segments is possible.

### Calculations and Results

The structure of (CH<sub>2</sub>)<sub>34</sub> was taken to be the conformation given by X-ray diffraction, 5,6 with tetrahedral geometry. Bond lengths of C-H = 1.093 Å and C-C = 1.54 Å were used, all valence angles were tetrahedral, and dihedral angles were taken as  $180^{\circ}$  for trans and  $\pm 60^{\circ}$  for gauche. This structure has  $C_{2h}$  symmetry, and the 300 normal modes are divided up as follows: A<sub>g</sub>, 77 (of which 18 are CH<sub>2</sub> stretching vibrations; Bg, 73 (of which 16 are CH<sub>2</sub> stretch); Au, 74 (of which 16 are CH<sub>2</sub> stretch); and B<sub>u</sub>, 76 (of which 18 are CH<sub>2</sub> stretch). The force field used was that refined for planar and nonplanar normal paraffins 10 and applied in a recent study of the normal vibrations of polyamides.11

The calculated frequencies below 1500 cm<sup>-1</sup> are listed in Tables I and II together with their approximate assignments based on calculated eigenvectors. Assignments are not given in the region below 600 cm<sup>-1</sup> because of the strong mixing of modes of the planar chain and of the fold regions, as well as strong mutual mixing of CCC bend and CC torsion modes below 200 cm<sup>-1</sup>. The first three harmonics of the  $A_g$  LA modes ( $\omega_1$ ,  $\omega_3$ , and  $\omega_5$ ) are, however, designated, since they are reasonably well identified from the eigenvectors. The symbols B, W, T, R, and S represent CH2 bending, wagging, twisting, and rocking and C-C stretching modes, respectively. The subscript indices represent the modes for the allowed sequential phase relationships of the (CH<sub>2</sub>)<sub>13</sub> all-trans chain segments. As a result of the interaction between the two such segments, the  $A_{\scriptscriptstyle g}$  +  $A_{\scriptscriptstyle u}$  modes form one sequence obeying eq 10 of ref 12 with a particular  $\vartheta(\varphi)$ function, while the  $B_g + B_u$  modes form another sequence obeying eq 10 but with another particular  $\vartheta(\varphi)$  function. The carbon atoms in the fold are labeled  $C_7$ ,  $C_8$ , and  $C_9$ and correspond to  $C_1$ ,  $C_{16}$ , and  $C_{17}$  of ref 5. The superscript plus signifies a mode symmetric with respect to the C2 axis passing through the center of the C<sub>8</sub>-C<sub>9</sub> bond, while the superscript minus signifies a mode which is antisymmetric with respect to this axis. The designation  $C_7$  or  $C_8$  in parentheses following B, W, T, or R refers to the mode of the CH<sub>2</sub> group centered on that carbon atom. A comparison is given

(1) A. Keller, Rep. Progr. Phys., 31, 623 (1968).

(2) M. Tasumi and S. Krimm, J. Polym. Sci., Part A-2, 6, 995 (1968).

(3) M. I. Bank and S. Krimm, ibid., Part A-2, 7, 1785 (1969)

(4) M. I. Bank and S. Krimm, J. Appl. Phys., 39, 4951 (1968).
(5) B. A. Newman and H. F. Kay, ibid., 38, 4105 (1967).

- (6) H. F. Kay and B. A. Newman, Acta Crystallogr., Sect. B, 24, 615 (1968).
- (7) H. Schonhorn and J. P. Luongo, Macromolecules, 2, 366 (1969) (8) R. F. Schaufele and T. Shimanouchi, J. Chem. Phys., 47, 3605
- (9) R. F. Schaufele, Macromol. Rev., 4, 67 (1970).

- (10) R. G. Snyder, J. Chem. Phys., 47, 1316 (1967).
- (11) J. Jakeš and S. Krimm, Spectrochim. Acta, Part A, 27, 19 (1971).
- (12) J. Jakeš, Collect. Czech. Chem. Commun., 30, 1523 (1965).

 $\label{eq:Table I} T_{ABLE\ I}$  Infrared-Active Frequencies of Cyclic  $C_{34}H_{68}$ 

|                             | Calcd       |                           |                                                                            |                    | Calcd                     |                           |                              |
|-----------------------------|-------------|---------------------------|----------------------------------------------------------------------------|--------------------|---------------------------|---------------------------|------------------------------|
| Exptl <sup>a</sup>          | $A_{\rm u}$ | $\mathbf{B}_{\mathrm{u}}$ | Assignment                                                                 | Exptl <sup>a</sup> | $\mathbf{A}_{\mathrm{u}}$ | $\mathbf{B}_{\mathbf{u}}$ | Assignmen                    |
|                             | 1476        |                           | $\mathbf{B}_{10}$                                                          | 1051 w             | 1053                      |                           | S <sub>8</sub>               |
|                             |             | 1476                      | $\mathbf{B}_{9}$                                                           |                    | 1044                      |                           | $R_{12}$                     |
|                             |             | 1475                      | $\mathbf{B}_{11}$                                                          |                    |                           | 1025                      | $S_5$                        |
|                             |             |                           |                                                                            |                    | 1019                      |                           | $S_6$                        |
|                             | 1474        |                           | $B_8 + B_{12}$                                                             | 1007 w             |                           | 1005                      | $S^-(C_6C_7)$                |
|                             | 1473        |                           | $B_8 + B_{12}$                                                             |                    | 1004                      |                           | $S(C_8C_9)$                  |
| 1469 vs                     |             | 1473                      | $\mathbf{B}_{13}$                                                          |                    |                           | 989                       | S <sub>3</sub>               |
| 1462 ms                     |             | 1472                      | $B^-(C_8)$                                                                 |                    | 981                       |                           | $S_4$                        |
| ,                           |             | 1470                      | $\mathbf{B}_7$                                                             | 965 w              |                           | 964                       | $R^-(C_8)$                   |
|                             | 1466        |                           | $\mathbf{B}_{6}$                                                           |                    | 935                       |                           | $\mathbf{R}_{10}$            |
| 1442 s                      | 1464        |                           | $B^+(C_7)$                                                                 | 919 w              |                           | 931                       | $\mathbf{R}_{11}$            |
|                             |             | 1462                      | $B^-(C_7)$                                                                 |                    | 900                       |                           | $S^+(C_6C_7)$                |
|                             |             | 1460                      | ${f B}_5$                                                                  | 867 w              |                           | 877                       | $\mathbf{R}_{9}$             |
| 1435 mw                     | 1455        |                           | $B^+(C_8)$                                                                 |                    | 857                       |                           | $R_8$                        |
|                             | 1454        |                           | $\mathbf{B}_4$                                                             | 818 w              |                           | 829                       | $R^-(C_7)$                   |
|                             |             | 1448                      | $\mathbf{B}_3$                                                             | 803 w              | 823                       |                           | $\mathbf{R}^+(\mathbf{C}_7)$ |
|                             | 1444        |                           | $\mathbf{B}_2$                                                             | 785 w              |                           | 786                       | $\mathbb{R}_7$               |
|                             |             | 1440                      | $\mathbf{B}_1$                                                             | 768 mw             | 782                       |                           | $R_6$                        |
|                             | 1385        |                           | $\mathbf{W}_{13}$                                                          | 742 w              |                           | 745                       | $\mathbf{R}_{\mathfrak{z}}$  |
|                             |             | 1384                      | $\mathbf{W}_{12}$                                                          |                    | 742                       |                           | $\mathbb{R}_4$               |
|                             | 1381        |                           | $\mathbf{W}_{11}$                                                          | 732 w              |                           | 724                       | $\mathbf{R}_3$               |
|                             |             | 1375                      | $\mathbf{W}_{10}$                                                          |                    | 723                       |                           | $\mathbf{R}_2$               |
| 1368 mw                     | 1374        |                           | $W^+(C_8)$                                                                 | 714 vs             |                           | 717                       | $\mathbf{R}_1$               |
| 1361 vw                     | 1363        |                           | $\mathbf{W}_{9}$                                                           | 700 ms             | 714                       |                           | $\mathbf{R}^+(\mathbf{C}_8)$ |
| 1342 s                      |             | 1355                      | $W^-(C_7)$                                                                 |                    |                           | 543                       |                              |
|                             | 1352        |                           | $W^+(C_7)$                                                                 |                    | 541                       |                           |                              |
| 1350 vw                     |             | 1348                      | $\mathbf{W}_8$                                                             |                    | 520                       |                           |                              |
| 1327 vw                     | 1328        |                           | $W_7$                                                                      |                    |                           | 464                       |                              |
| 1314 w                      |             | 1312                      | $\mathbf{W}_{6}$                                                           |                    | 461                       |                           |                              |
|                             | 1310        |                           | $T_{5}$                                                                    |                    |                           | 435                       |                              |
|                             |             | 1310                      | $T_4$                                                                      |                    | 363                       |                           |                              |
|                             | 1307        |                           | $T_3$                                                                      |                    |                           | 346                       |                              |
|                             |             | 1306                      | $T_6$                                                                      |                    | 311                       |                           | ,                            |
| 1304 mw                     |             | 1304                      | $W^-(C_8)$                                                                 |                    |                           | 292                       |                              |
|                             |             | 1303                      | $T_2$                                                                      |                    | 232                       |                           |                              |
|                             | 1302        |                           | $T_1$                                                                      |                    |                           | 208                       |                              |
|                             | 1298        |                           | $T_7$                                                                      |                    | 189                       |                           |                              |
|                             |             |                           |                                                                            |                    |                           | 149                       |                              |
|                             |             | 1291                      | $T_8$                                                                      |                    | 147                       |                           |                              |
| 1293 w                      | 1289        | 1271                      | $\mathbf{W}_{5}$                                                           |                    | 1-7/                      | 146                       |                              |
| 1295 W                      | 1209        | 1278                      | $T^-(C_8)$                                                                 |                    |                           | 141                       |                              |
|                             | 1277        | 12/0                      | $T_9$                                                                      |                    | 130                       | 171                       |                              |
| 1274 m                      | 1411        | 1269                      | W.                                                                         |                    | 124                       |                           |                              |
| 1274 III<br>1257 vw         | 1256        | 12,57                     | $W_4$ $T^+(C_7)$                                                           |                    | 127                       | 118                       |                              |
| 7451 AAA                    | 1230        | 1248                      | $T_{10}$                                                                   |                    |                           | 106                       |                              |
| 1240 mw                     | 1247        | 1270                      | $\mathbf{W}_3$                                                             |                    |                           | 103                       |                              |
| 1240 mw<br>12 <u>2</u> 8 vw | 147/        | 1229                      | $\mathbf{W}_{2}^{3}$                                                       |                    | 87                        | 103                       |                              |
| 1240 YW                     | 1213        | 1461                      | $T_{11}$                                                                   |                    | <b>7</b> 6                |                           |                              |
| 1209 vw                     | 1210        | 1207                      | $T^{-11}$ $T^{-}(C_7)$                                                     |                    | 70                        | 66                        |                              |
| 1197 w                      | 1201        | 1401                      | <b>XX</b> 7                                                                |                    | 62                        | 00                        |                              |
| 1197 w<br>1180 w            | 1201        | 1180                      | T.,                                                                        |                    | 02                        | 37                        |                              |
| 1160 w<br>1162 vw           | 1160        | 1140                      | $T_{12}$ $T^+(C_8)$ $T_{13}$                                               |                    | 30                        | 51                        |                              |
| 1102 VW                     | 1142        |                           | $T_{13}$                                                                   |                    | 50                        | 24                        |                              |
| 1127 w                      | 1,72        | 1136                      | $\mathbf{S}_{1}^{13}$                                                      |                    |                           | 17                        |                              |
| 1121 w<br>1104 vw           | 1103        | 1100                      | $S^+(C_7C_8)$                                                              |                    | 12                        | 1.7                       |                              |
| 1104 VW                     | 1103        | 1095                      | $R_{13}$                                                                   |                    | 14-                       |                           |                              |
| 1083 w                      |             | 1083                      | $S^{-}(C_7C_8)$                                                            |                    |                           |                           |                              |
| 1002 M                      | 1069        | 1402                      | $S_{10}$                                                                   |                    |                           |                           |                              |
|                             | 1009        | 1068                      | S <sub>10</sub><br>S <sub>11</sub>                                         |                    |                           |                           |                              |
| 1068 m                      | 1067        | 1000                      | $S_1$ $S_2$                                                                |                    |                           |                           |                              |
| 1000 [1]                    | 1007        | 1067                      | $\mathbf{S}_{9}$                                                           |                    |                           |                           |                              |
|                             |             | 1067                      | $egin{array}{c} \mathbf{S}_9 \ \mathbf{S}_7 \ \mathbf{S}_{12} \end{array}$ |                    |                           |                           |                              |
|                             |             | 1003                      | <b>13</b> 7                                                                |                    |                           |                           |                              |
|                             | 1062        |                           | \$                                                                         |                    |                           |                           |                              |

TABLE II RAMAN-ACTIVE FREQUENCIES OF CYCLIC C34H68

|            | Calcd-       |                |                                    | Calcd              |                  |                  |                       |
|------------|--------------|----------------|------------------------------------|--------------------|------------------|------------------|-----------------------|
| Exptla     | $A_g$        | $\mathbf{B}_g$ | Assignment                         | Exptl <sup>a</sup> | $\mathbf{A}_{g}$ | $\mathbf{B}_{g}$ | Assignmen             |
|            | 1476         |                | В,                                 | 1065 ms            |                  | 1062             | $S_{12}$              |
|            |              | 1476           | $\mathbf{B}_{10}$                  |                    |                  | 1050             | $S_8$                 |
|            | 1475         | 1170           | B <sub>11</sub>                    |                    | 1047             |                  | $S_3$                 |
|            | 1475         | 1474           | $B_8 + B_{12}$                     |                    | 1011             | 1041             | $\mathbf{R}_{12}$     |
|            | 1473         | 17/7           |                                    |                    | 1032             | 1041             | S <sub>7</sub>        |
|            | 14/3         | 1.470          | B <sub>13</sub>                    |                    | 1032             | 1030             |                       |
|            |              | 1473           | $\mathbf{B}_{12} + \mathbf{B}_{8}$ |                    |                  | 1029             | $S_4$                 |
|            |              | 1472           | B-(C <sub>8</sub> )                |                    | 1009             |                  | $R_{11}$              |
|            | 1470         |                | $\mathbf{B}_{7}$                   |                    |                  | 992              | $\mathbf{S}_{6}$      |
|            |              | 1465           | ${f B_6}$                          |                    | 987              |                  | $\mathbf{S}_5$        |
|            | 1464         |                | $B^+(C_7)$                         | 985 vw             | 972              |                  | $S(C_8C_9)$           |
|            |              | 1462           | $B^-(C_7)$                         |                    |                  | 970              | $R^-(C_8)$            |
|            | 1460         |                | ${f B}_5$                          |                    |                  | 956              | $\mathbf{R}_{10}$     |
| 1461 w     | 1455         |                | $B^+(C_8)$                         |                    |                  |                  | $\int S^{-}(C_6C_7)$  |
| X 102 11   |              | 1454           | $B_4$                              |                    |                  | 904              | $S^-(C_7C_8)$         |
|            | 1448         | 2.2,           | $\mathbf{B}_{3}$                   | 891 m              | 899              |                  | $S^+(C_6C_7)$         |
|            | 1440         | 1444           | $\mathbf{B_2}$                     | 691 111            | 895              |                  | $R_9$                 |
| 1.1.10     | 1440         | 1444           |                                    |                    | 095              | 0.51             |                       |
| 1449 ms    | 1440         | 1205           | $\mathbf{B}_1$                     |                    | 022              | 851              | $R_8$                 |
| 1400 m (b) | 1001         | 1385           | $\mathbf{W}_{13}$                  |                    | 832              | 200              | $R^+(C_7)$            |
|            | 1384         |                | $\mathbf{W}_{12}$                  |                    |                  | 809              | $R^{-}(C_7)$          |
|            |              | 1381           | $\mathbf{W}_{11}$                  |                    | 808              |                  | $\mathbb{R}_7$        |
|            | 1376         |                | $\mathbf{W}_{	exttt{10}}$          |                    |                  | 764              | $R_6$                 |
| 1375 m     | 1372         |                | $W^+(C_8)$                         |                    | 759              |                  | $\mathbf{R}_5$        |
|            |              | 1364           | $\mathbf{W}_{9}$                   |                    |                  | 732              | $R_4$                 |
|            |              | 1355           | $W^-(C_7)$                         |                    | 730              |                  | $\mathbf{R}_3$        |
|            | 1353         |                | $W^+(C_7)$                         |                    |                  | 719              | $\mathbf{R}_{2}$      |
|            | 1347         |                | $W_8$                              |                    | 718              |                  | $\mathbf{R}_1$        |
| 1330 w     |              | 1330           | . W <sub>7</sub>                   |                    | 714              |                  | $R^+(C_8)$            |
| 1550 11    | 1310         |                | T <sub>4</sub>                     | 540 w              | 553              |                  | 1 (0,)                |
|            | 1020         | 1310           | $T_5$                              | 5.10 11            | 555              | 521              |                       |
|            | 1309         | 1510           | $\mathbf{W}_{6}$ .                 |                    |                  | 512              |                       |
|            | 1302         | 1307           | $T_3$                              | 496 w              | 507              | 312              |                       |
|            |              |                |                                    |                    | 507              |                  | $\omega_5$            |
|            | 1205         | 1306           | $W^-(C_8)$                         | 431 w              | 440              |                  | $\omega_3$            |
|            | 1305         |                | $T_6$                              | 400 w              | 404              |                  |                       |
|            | 1303         |                | $T_2$                              |                    |                  | 403              |                       |
| 1301 ms    |              | 1302           | $\mathbf{T}_1$                     |                    |                  | 345              |                       |
|            |              | 1298           | $\mathbf{T}_{7}$                   | 303 w              | 296              |                  |                       |
|            |              | 1290           | $\mathbf{W}_{5}$                   |                    |                  | 282              |                       |
|            | 1.289        |                | $T_8$                              |                    |                  | 239              |                       |
|            |              | 1282           | $T^-(C_8)$                         | 257 w              | 232              |                  |                       |
|            | 1.273        |                | $T^+(C_7)$                         |                    |                  | 164              |                       |
|            | - · · · ·    | 1265           | $T_9$                              | 147 vs             | 154              |                  | $\omega_{\mathrm{I}}$ |
|            | 1263         |                | $\mathbf{W}_{4}$                   | 11, 13             | 147              |                  | <b>₩</b> 1            |
|            | 1203         | 1251           | $\mathbf{W}_{3}^{4}$               |                    | 17/              | 147              |                       |
|            | 1237         | 1401           | $\mathbf{T}_{10}$                  |                    | 138              | 14/              |                       |
|            | 1437         | 1220           |                                    |                    | 130              | 122              |                       |
|            | 1226         | 1228           | $T^-(C_7)$                         |                    |                  | 132              |                       |
|            | 1226         |                | $\mathbf{W}_{2}$                   |                    |                  | 127              |                       |
|            |              | 1205           | $T_{11}$                           | 123 w              | 122              |                  |                       |
|            | 1188         |                | $\mathbf{T}_{12}$                  | 100 w              | 105              |                  |                       |
|            |              | 1187           | $\mathbf{W}_1$                     |                    | 95               |                  |                       |
| 1174 w     | 1161         |                | $T^+(C_8)$                         |                    |                  | 94               |                       |
| 1140 m     | 1152         |                | $R_{13}$                           | 77 w               |                  | 72               |                       |
|            |              | 1120           | $T_{13}$                           | 66 w               |                  | 60               |                       |
| 1110 w     | 1104         |                | $S^+(C_7C_8)$                      |                    | 56               |                  |                       |
| 1096 m     | 1096         |                | $S_1$                              | 40 w               | 42               |                  |                       |
| 1090 111   |              | 1091           | $S^-(C_7C_8)$ , $S^-(C_7C_8)$      |                    |                  | 41               |                       |
|            |              |                |                                    | 24                 | 2.4              | 71               |                       |
|            |              | 1079           | $S_{2}$                            | 21 w               | 7/1              |                  |                       |
|            |              | 1079<br>1069   | $\mathbf{S}_2$                     | 21 w               | 24               | 15               |                       |
|            | 1069         | 1079<br>1069   | $S_{10}$                           |                    |                  | 15               |                       |
|            | 1068<br>1063 |                |                                    | 21 w<br>13 w       | 11               | 15               |                       |

in Tables I and II with the observed infrared13 and Raman14 frequencies.

In order to better evaluate the calculations of the LA modes of (CH<sub>2</sub>)<sub>34</sub>, normal vibration calculations were done of the LA modes of some planar normal paraffins  $(C_nH_{2n+2})$  for which data are available.<sup>8</sup> The results for n = 18, 20, 24,28, 32, 36, 44, and 94 are given in Table III, using the same force field as above.

<sup>(13)</sup> We are indebted to Mr. Jack Ching for obtaining the infrared

spectra.
(14) M. Tasumi, T. Shimanouchi, and R. F. Schaufele, manuscript in preparation.

608 Krimm, Jakeš Macromolecules

| TABLE III                                                   |
|-------------------------------------------------------------|
| LONGITUDINAL ACOUSTIC VIBRATIONS OF $C_nH_{2n+2}$ PARAFFINS |

| n  | $ u_{\mathrm{obsd}}$ | $ u_{\mathrm{calcd}}$ | n  | $ u_{\mathrm{obsd}}$ | $ u_{\mathrm{calcd}}$ |
|----|----------------------|-----------------------|----|----------------------|-----------------------|
| 18 | 132.5                | 124.9                 | 36 | 67.4                 | 63.2                  |
|    | 355                  | 353.7                 |    | 189                  | 185.4                 |
|    | 493                  | $500.0^a$             |    | 303                  | 302.8                 |
| 20 | 113.6                | 112.2                 |    | 403                  | 408.8                 |
|    | 324                  | 321.1                 |    | 475                  | 487.4                 |
|    | 475                  | $491.9^{a}$           | 44 | 56.5                 | 51.8                  |
| 24 | 97.8                 | 94.6                  |    | 155                  | 154.1                 |
|    | 279                  | 277.0                 |    | 259                  | 252.6                 |
|    | 422                  | 426.1                 | 94 | 26                   | 24.3                  |
| 28 | 84.7                 | 81.2                  |    | 71                   | 72.8                  |
|    | 241                  | 238.2                 |    | 121                  | 120.9                 |
|    | 377                  | $367.8^{a}$           |    | 168                  | 168.3                 |
| 32 | 75.8                 | 71.1                  |    | 216                  | 214.8                 |
|    | 211                  | 209.4                 |    | 265                  | 260.3                 |
|    | 337                  | 337.9                 |    | 305                  | 302.6°                |
|    |                      |                       |    | 346                  | 345.4                 |
|    |                      |                       |    | 386                  | 382.1ª                |
|    |                      |                       |    | 417                  | 421.5                 |
|    |                      |                       |    | 444                  | 453.2                 |

<sup>&</sup>lt;sup>a</sup> Mixed with other branches of the dispersion curve.

#### Discussion

Assignments. Band assignments in Tables I and II have been made largely on the basis of frequency correlation and of the expected intensities of various modes as indicated by the eigenvectors. Thus, in the  $R_i$  series the odd members are expected to be more intense than the even in the infrared, and both are expected to be weak in the Raman spectrum. In the infrared,  $R^+(C_8)$  is expected to be more intense than  $R^-(C_8)$ . Twisting modes are generally very weak in the infrared but of moderate intensity in the Raman. The lower members of the wagging series in the infrared should be stronger than the higher (this may not appear to be strictly true from Table I, but it must be recalled that the assignments do not represent pure modes but only the largest component of the eigenvector). This is what justifies assigning the medium-strong band at 1342 cm<sup>-1</sup> to a mode in the fold region rather than to one of the  $W_i$  modes. The  $B_u$  mode is favored over the  $A_u$  mode, since the intensity of the former is expected to be greater than that of the latter (a similar argument holds for the assignment of  $B(C_7)$  and  $B(C_8)$  modes).

The overall agreement between observed and calculated frequencies is good, the average difference being 0.5% for the infrared bands and 0.9% for the Raman. The relatively large discrepancy for the 1342-cm<sup>-1</sup> band may be a result of the fact that no molecule with the GG conformation was used in the refinement of the force field.<sup>10</sup> However, it may also be associated with the large distortions in the actual structure which occur in the fold region as a result of steric hindrance.<sup>5,6</sup>

Fold Structure in Polyethylene Single Crystals, The present analysis substantiates the assignment of the 1342-cm<sup>-1</sup> band to a vibrational mode in the fold region of (CH<sub>2</sub>)<sub>34</sub>. It also helps shed light on the difficulties involved in using this result alone to infer information on fold structure in polyethylene single crystals. With respect to the arguments presented in the above paper, the following points should be noted.

(1) The calculated frequencies of the  $W(C_7)$  and  $W(C_8)$  modes agree very well with those for the GG and GTG structures, respectively, calculated for normal paraffins. <sup>10</sup> This is not too surprising, since precisely these topological conformations occur in the fold region of  $(CH_2)_{34}$ , and coupling to the external chains should not be very different

from that in the paraffins. Whereas the observed frequencies for the W(C<sub>8</sub>) modes are in good agreement with those calculated, this is less so for the W(C<sub>7</sub>) mode. As was noted above, this may in part be due to the distortion which exists in the fold region of the molecule in its crystalline conformation. In support of this, it should be noted that upon melting the 1342-cm<sup>-1</sup> band essentially disappears and is replaced by a strong band at 1350 cm<sup>-1</sup>, while the 1365-cm<sup>-1</sup> band increases in intensity.7 Both the 1350- and 1365-cm<sup>-1</sup> bands are found in liquid n-paraffins<sup>7,10</sup> and are assignable predominantly to GG and GTG structures, respectively 10 (although the 1350-cm<sup>-1</sup> band may also contain contributions from G structures). The enhanced intensity ratio of 1350 to 1365 in melted (CH<sub>2</sub>)<sub>34</sub>, as compared to this ratio in the liquid nparaffins, may be indicative of the larger fraction of GG conformations which can persist in the cyclic paraffin even in the liquid state as a result of its topology. If these assignments are valid, they indicate that a significant part of the 1342-to-1350-cm<sup>-1</sup> shift which occurs on melting (CH<sub>2</sub>)<sub>34</sub> is due to the release of strain on the TGGT regions of the molecule, rather than to the replacement of these by G conformations as previously suggested.7

- (2) The presence of a band at 1342 cm<sup>-1</sup> does not necessarily indicate the presence of a specific structure (although the reverse is in general true, viz., a specific structure results in a specific absorption band). Thus, the 1342-cm<sup>-1</sup> band of crystalline (CH<sub>2</sub>)<sub>34</sub> probably arises, as we have seen, from a distorted GG conformation. In contrast to the previous assignment,7 similar bands of the liquid C6, C8, C10, and C12 paraffins are clearly due<sup>10</sup> to terminal GTT structures (which would also be expected to be of relatively constant intensity in the series<sup>7</sup>), and the  $\sim$ 1340-cm<sup>-1</sup> absorption of melted (CH<sub>2</sub>)<sub>34</sub> and of polyethylene most likely originates from TG and GTTG structures. 10 In the former case these could be associated with bent (CH<sub>2</sub>)<sub>13</sub> chain segments and in the latter case with fold regions or, more likely, cilia.15 In other words, the presence of slight absorption at ~1340 cm<sup>-1</sup> in polyethylene single crystals can in no way be related uniquely to the tight fold structure of crystalline (CH<sub>2</sub>)<sub>34</sub>, and in fact it most probably has another origin. Similarly, the 1350-cm<sup>-1</sup> band of crystalline (CH<sub>2</sub>)<sub>34</sub> most likely originates (cf. Table I) from the W<sub>8</sub> mode of the (CH<sub>2</sub>)<sub>13</sub> segments rather than from any additional gauche conformations in the molecule.
- (3) The absence of a band at 1342 cm<sup>-1</sup> in the spectrum of polyethylene single crystals can be taken as an indication of the probable absence of the (strained) GGTGG fold geometry of crystalline (CH<sub>2</sub>)<sub>34</sub>, but it says nothing about whether the fold is tight or not. In the first place, the fold in polyethylene simply cannot be the same as that in (CH2)34, since the chain stems (for (110) folding) have a completely different relationship to one another than is the case for the cyclic paraffin.<sup>1</sup> On this basis alone a band at 1342 cm<sup>-1</sup> would not be expected in polyethylene. Secondly, if the 1350- and 1365-cm<sup>-1</sup> bands in polyethylene are taken to indicate the presence of GG and GTG conformations, respectively, 10 this in no way excludes the possibility of a regular tight fold. Some of the intensity of these absorption bands may be due to cilia,15 but the remainder may arise from a fold structure which utilizes these conformations. If, for example, the fold contains an unstrained GG conformation, then its absorption would probably be expected near 1350 rather than 1342 cm<sup>-1</sup>. The ratio of 1340- to 1350-cm<sup>-1</sup> absorptions in polyethylene single

crystals (which in any case should not be similar to that of (CH<sub>2</sub>)<sub>34</sub> since the band origins are different) therefore implies nothing about the presence or absence of regular folding, contrary to previous assertions.7

We conclude that an analysis of the vibrational spectrum of (CH<sub>2</sub>)<sub>34</sub> does not permit a determination of whether folding in polyethylene single crystals is tight or not, beyond the statement that it cannot involve the specific tight fold of (CH<sub>2</sub>)<sub>34</sub>. Our analysis does suggest that if GG conformations are present in the fold they are (relative to  $(CH_2)_{34}$ ) unstrained.

Longitudinal Acoustic Modes. It has been suggested8,9 that the LA modes of polyethylene single crystals would be characteristic of their fold length. It was, however, noted that the relationship obtained for the finite paraffins would be valid for polyethylene only if it could be assumed that oscillations in a planar zigzag segment were completely decoupled from oscillations in segments joined to it by folds. In order to determine whether or not such an assumption is valid, we have calculated the LA modes of some linear paraffins (see Table III) for purposes of comparison with the calculation for  $(CH_2)_{34}$ .

A comparison first of the observed LA modes of (CH<sub>2</sub>)<sub>34</sub> with the relationship found for linear paraffins (cf. Figure 4 of ref 8) shows that these frequencies do not fit in with those of the finite molecules. If we assume n = 15 for each planar segment of the (CH2)34 molecule, then the observed frequencies of 147, 431, and 496 cm<sup>-1</sup> are far from their expected values of about 153, 410, and 560 cm<sup>-1</sup>. This

suggests that coupling effects are not negligible. A similar conclusion is reached by comparing the  $\omega_1$  modes of the linear paraffins (Table III) and of (CH2)34 (Table II). In all cases the observed frequency for the former is higher than the calculated frequency, while for the latter (using the same force field) the observed frequency is lower than the calculated frequency. This suggests that for cyclic structures such as  $(CH_2)_{34}$  the  $\omega_1$  LA mode of the planar segments will be consistently lower than the value for a linear chain. If this effect extends to n values appropriate to polyethylene crystals, viz., about 100, then use of the relationship for finite paraffins will tend to overestimate the planar zigzag chain length. This effect is of the order of 6% for (CH<sub>2</sub>)<sub>34</sub>, but may be different for longer segments and for different fold geometries (for example, folds in polyethylene single crystals may not consist of GGTGG conformations, but in addition they do not give rise to cyclic structures).

We conclude that caution must be used in applying the relationship for LA frequencies in finite paraffin chains to the determination of the lengths of planar zigzag segments in folded chain polyethylene.16

Acknowledgment. We are indebted to R. F. Schaufele for making his Raman data available to us prior to publication. This research was supported by a grant from the National Science Foundation, No. GP-10922.

(16) W. L. Peticolas, G. W. Hibler, J. L. Lippert, A. Peterlin, and H. Olf, Appl. Phys. Lett., 18, 87 (1971).

## Inelastic Light-Scattering Study of Macromolecular Reaction Kinetics. I. The Reactions $A \rightleftharpoons B$ and $2A \rightleftharpoons A_9$

Victor A. Bloomfield\*1 and Jülyet Aksiyote Benbasat

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55101. Received May 10, 1971

ABSTRACT: This paper considers the effect of chemical reactions on the spectrum of light scattered from macromolecular solutions. A general formalism is developed, taking into account only diffusion and chemical reaction, using the matrix eigenvalue technique of Salsburg and coworkers. This formalism is applied to the reactions  $A \rightleftharpoons B$  and  $2A \rightleftharpoons A_2$ , which are shown to yield identical results after appropriate definition of relaxation times and effective equilibrium constants. Particular attention is focused on the case where the diffusion coefficients of reactants and products are different, while their polarizabilities are identical. Numerical calculations, using plausible values of diffusion coefficients and chemical relaxation times for macromolecular solutions, indicate that macromolecular reaction processes should measurably perturb inelastic lightscattering spectra in the audiofrequency region.

nelastic light scattering, which measures the spectrum of Rayleigh light scattered from solutions illuminated with monochromatic laser light, has emerged as a significant new technique for studying macromolecules in solution. A useful review of this technique, with extensive bibliography, has been written by Chu.<sup>2</sup> Most of the applications to polymers have been concerned with measurement of diffusional motion. However, one of the potentially most significant applications is measurement of the kinetics of fast reactions. This has

been the subject of many theoretical<sup>3-11</sup> and a few experimental<sup>12,13a</sup> investigations.

- (3) (a) B. J. Berne and H. L. Frisch, J. Chem. Phys., 47, 3675 (1967); (b) B. J. Berne, J. M. Deutsch, J. T. Hynes, and H. L. Frisch, ibid., 49, 2864 (1968).
  - (4) B. J. Berne and R. Pecora, ibid., 50, 783 (1969).
  - (5) L. Blum and Z. W. Salsburg, *ibid.*, 48, 2292 (1968).
    (6) L. Blum and Z. W. Salsburg, *ibid.*, 50, 1654 (1969).
    (7) L. Blum, *ibid.*, 51, 4025 (1969).
- (7) L. Brian, Dial., 91, 705.
  (8) D. L. Knirk and Z. W. Salsburg, ibid., 54, 1251 (1971).
  (9) J. M. Schurr, J. Phys. Chem., 73, 2820 (1969).
  (10) Y. Yeh and R. N. Keeler, Quart. Rev. Biophys., 2, 315 (1969).
- (11) M. Weinberg and R. Kapral, J. Chem. Phys., 53, 4409 (1970).
- (12) Y. Yeh and R. N. Keeler, ibid., 51, 1120 (1969).

<sup>(13) (</sup>a) Y. Yeh, ibid., 52, 6218 (1970); (b) G. A. Korn and T. M. orn, "Mathematical Handbook for Scientists and Engineers," 2nd ed, McGraw-Hill, New York, N. Y., 1968, p 416.

<sup>(1)</sup> Alfred P. Sloan Foundation Fellow.

<sup>(2)</sup> B. Chu, Annu. Rev. Phys. Chem., 21, 145 (1970).